Свойства пространства и времени и связанные с ними симметрии. Теорема Э

  • Дата: 14.04.2024

Алексей Левин Термин «теорема» пришел в науку из геометрии эпохи эллинизма. В математике он в основном и пребывает. Однако теоремы есть и в других науках, в частности в физике. Так, в XIX веке в классической статистической механике была сформулирована теорема о равнораспределении кинетической энергии частиц по степеням свободы, а затем Н -теорема Больцмана, согласно которой энтропия неравновесной системы всегда возрастает со временем. В XX веке число физических теорем значительно увеличилось. В качестве примеров можно назвать теорему Фарри, которая утверждает, что в электромагнитных процессах сохраняется четность количества фотонов; теорему Паули о связи спина со статистикой; теорему Вика, исполняющую ключевую роль в квантовой теории поля.

В этом славном ряду совершенно особое место занимает теорема, доказанная внештатной сотрудницей Гёттингенского университета Эмми Нётер в разгар Великой войны — где-то на рубеже 1915−1916 годов. Впервые автор сделала о ней доклад на семинаре Гёттингенского математического общества 23 июля 1918 года, так что столетний юбилей уже не за горами.

33-летняя Эмми Нётер приехала в Гёттинген весной 1915 года по приглашению великих математиков Феликса Клейна и Давида Гильберта. Через несколько месяцев там произошли события, ставшие прелюдией к ее первой великой работе. Летом Альберт Эйнштейн ознакомил гёттингенских коллег с основными идеями своей уже близкой к завершению теории гравитации, более известной как общая теория относительности. Среди слушателей был и Гильберт, который заинтересовался эйнштейновскими идеями. В ноябре Эйнштейн написал окончательную версию уравнений ОТО, которую немедля представил Прусской академии наук. Чуть позже Гильберт по-новому вывел эти же уравнения, о чем и сообщил в статье, опубликованной в конце марта 1916 года.

В ходе этой работы Гильберт понял, что новая теория гравитации ставит под сомнение закон сохранения энергии. Уравнения ОТО могут быть записаны в произвольных системах пространственно-временных координат, между которыми возможны гладкие преобразования. С их помощью можно занулить величину поля тяготения в любой произвольно выбранной точке и ее бесконечно малой окрестности. Физически это означает, что воображаемый наблюдатель не сможет зарегистрировать в этой точке силу тяготения (в этом и состоит эйнштейновский принцип эквивалентности). Отсюда следует, что в ОТО однозначная локализация энергии в принципе невозможна. Вопрос, как быть с ее сохранением, сильно обеспокоил Гильберта, и он попросил Эмми Нётер с этим разобраться. Эмми Нётер в 1910 году («Википедия») Эта просьба была исполнена с лихвой. Нётер получила исключительно сильные результаты, область применения которых оказалась много шире рамок задачи, изначально поставленной Гильбертом. Сегодня мы знаем, что она охватывает не только ОТО и другие полевые теории классической физики, но и теории квантованных полей, развитые во второй половине двадцатого века.

В самой общей форме суть теоремы Нётер можно изложить буквально в двух словах. Изучая природу на фундаментальном уровне, ученые ищут такие характеристики физических систем, которые остаются неизменными в ходе любых превращений. Из теоремы Нётер следует, что существование подобных сохраняющихся свойств непосредственно связано с симметриями так называемого действия, фундаментальной физической величины, которая определяет динамику системы. Иными словами, законы сохранения есть прямое следствие наличия тех или иных симметрий действия. Этот вывод стал универсальным инструментом выявления таких законов в различных областях физики — от ньютоновской механики до Стандартной модели элементарных частиц. Помимо этого его можно считать одним из наиболее красивых теоретических прозрений во всей истории науки.

Гильберт вывел уравнения ОТО на основе принципа, согласно которому в реальных физических процессах действие принимает экстремальное значение — как правило, достигает минимума. В те времена уже знали, что этот принцип позволяет получить уравнения и классической механики, и максвелловской электродинамики — да и многое другое. Поэтому его рассматривали как мощнейший инструмент конструирования уравнений, определяющих динамику различных физических систем. С ним работала и Эмми Нётер. Ее интересовали операции, которые преобразуют математические объекты, участвующие в вычислении действия, однако оставляют неизменной его численное значение — или, в более общем случае, изменяют это значение не слишком сильно (естественно, для этого «не слишком» имеется точное математическое определение). Это означает, что подобные операции оставляют действие инвариантным.

Инвариантность по отношению к определенному преобразованию или к целому классу преобразований называется симметрией. Эмми Нётер в своей работе задалась вопросом, к каким последствиям приводит наличие у действия тех или иных симметрий.

Эту задачу она решила в очень общей форме, но только для непрерывных симметрий: дискретные она не рассматривала. Математика уже располагала эффективным инструментом исследования таких симметрий в лице групп Ли. Их теория была хорошо разработана, и Нётер в ней отлично разбиралась.

Эмми Нётер исследовала преобразования симметрии, в которых работают группы Ли двух типов. В одном случае каждое преобразование (то есть каждый элемент группы Ли) определяется конечным набором численных параметров. Элементы групп Ли второго типа, напротив, зависят от того или иного числа произвольных функций. Например, плоские вращения задаются одним параметром (углом поворота), а вращения в трехмерном пространстве — тремя (каждое из них можно представить как последовательность вращений вокруг трех координатных осей). Эйнштейновская же ОТО основана на возможности произвольно выбирать локальную систему отсчета в любой точке пространства-времени. Это тоже разновидность симметрии, причем именно той, которую Эмми Нётер отнесла ко второму типу.

Теорема Нётер состоит из двух частей. Сначала она рассматривала следствия инвариантности действия относительно симметрий, которым отвечают групповые преобразования первого типа. Оказалось, что подобная инвариантность позволяет записать математические соотношения, которые можно интерпретировать как законы сохранения физических величин, удовлетворяющих этим симметриям. А если проще, то эти законы есть прямые следствия тех или иных симметрий.

Вот несколько примеров. В изолированной системе частиц, которые подчиняются ньютоновской механике и ньютоновской теории тяготения, действие инвариантно относительно сдвигов времени. Из теоремы Нётер следует, что полная энергия частиц не зависит от времени, то есть сохраняется. Точно так же инвариантность относительно произвольных сдвигов в пространстве означает сохранение полного импульса, а инвариантность относительно вращений — сохранение момента количества движения.

Конечно, эти законы были известны и раньше, но природа их оставалась загадочной; если угодно, таинственной. Теорема Нётер раз и навсегда сняла покров с этой тайны, связав законы сохранения с симметриями пространства и времени.

Вот еще один пример, который был осознан уже после появления квантовой электродинамики. До сих пор речь шла о внешних симметриях, связанных не непосредственно с физической системой, а с ее отношениями с временем и пространством. Однако теорема Нётер позволяет учесть и внутренние симметрии, иначе говоря, симметрии физических полей, чью динамику определяет то или иное действие (формально это симметрии математических конструкций, представляющих данные поля). Это тоже ведет к открытию различных законов сохранения.

Ограничусь одним примером. Действие для свободного релятивистского электрона, на основе которого можно вывести уравнение Дирака, не изменяется при преобразовании волновой функции, которое сводится к ее умножению на комплексное число с единичным модулем. Физически это означает изменение фазы волновой функции на постоянную величину, не зависящую от пространственно-временных координат (такая симметрия называется глобальной). Геометрически это преобразование эквивалентно плоскому повороту на произвольный, но фиксированный угол и потому описывается весьма простой однопараметрической группой Ли. Из теоремы Нётер вытекает, что вследствие такой симметрии сохраняется электрический заряд. Не слабый результат и уж отнюдь не тривиальный!

Вторая теорема Нётер описывает ситуации, когда преобразования симметрии, оставляющие действие инвариантным, зависят не от численных параметров, а от каких-то произвольных функций. В общем случае такая инвариантность не дает возможности формулировать законы сохранения физически измеримых величин. В частности, из второй теоремы Нётер следует, что в ОТО не существует универсальных законов сохранения энергии, импульса и момента импульса, которые имели бы однозначный смысл в физически реальных (то есть не бесконечно малых) областях пространства-времени. Правда, есть частные случаи, когда в рамках ОТО можно корректно поставить вопрос о сохранении энергии. Однако в целом решение этой задачи зависит от того, что именно считать энергией поля тяготения и в каком смысле говорить о ее сохранении. Более того, не сохраняется и полная энергия частиц, которые движутся в пространстве с динамическим полем тяготения (другими словами, в пространстве с изменяющейся метрикой). Так, в нашей расширяющейся Вселенной фотоны реликтового излучения постоянно теряют энергию — это всем известный феномен космологического красного смещения.

Симметрии второй теоремы Нётер постоянно применяются в фундаментальной физике. Они позволяют устанавливать соответствия между свойствами частиц и полей, с которыми эти частицы могут взаимодействовать. Опять-таки — куда как не слабо! Не случайно известный американский физик-теоретик профессор Калифорнийского университета Энтони Зи в вышедшей в 2016 году монографии «Group Theory in a Nutshell for Physicists» назвал Эмми Нётер arguably the deepest woman physicist who ever lived. Столь высокая оценка — и всего лишь из-за единственной статьи!

Эмми Нётер заслуженно считается великим математиком — и не только из-за своей теоремы. С 1920 года она занялась абстрактной алгеброй и алгебраической геометрией, где получила множество основополагающих результатов. В 1933 году ее как еврейку изгнали из Гёттингена, и она перебралась в США, где получила должность в женском колледже Брин-Мар в штате Пенсильвания. Но жить ей оставалось недолго. 14 апреля 1935 года Эмми Нётер скончалась из-за осложнений после хирургической операции — скорее всего, от тяжелой инфекции.

С биографией Эмми Нётер легко ознакомиться, и не стоит ее пересказывать. Но есть интересная деталь, которая мало кому известна. В Брин-Мар Нётер пригласила декан математического факультета Анна Пелл Уилер. Ее наставником в науке и первым мужем был профессор математики университета Южной Дакоты Александр Пелл, к тому времени уже покойный. Однако Пелл не всегда был Пеллом. Он родился в 1857 году в Москве, и звали его тогда Сергеем Петровичем Дегаевым. Он вошел в историю русского революционного подполья как величайший предатель и провокатор, сдавший охранке Веру Фигнер и других членов «Народной воли». Позднее, чтобы избежать смерти от рук бывших товарищей, он помог им в убийстве своего куратора — жандармского подполковника Георгия Порфирьевича Судейкина (эта история подробно описана в романе Юрия Давыдова «Глухая пора листопада»). Оставшиеся на свободе народовольцы позволили Дегаеву уехать в Америку, где он изменил имя и превратился в Пелла. В Штатах он получил математическое образование, потом окончил аспирантуру в балтиморском Университете имени Джонса Хопкинса и в конце концов стал весьма почтенным консервативным джентльменом и отличным преподавателем. Выходит, что для устройства Эмми Нётер в США было нужно, чтобы злой гений «Народной воли» превратился в уважаемого американского профессора, который заметил и продвинул одаренную студентку из глубокой провинции. Прекрасный пример того, что называют иронией истории.

Точно сформулируем и докажем теорему Нётер.

Рассмотрим некоторую систему, описываемую функцией Лагранжа

Форма уравнений Лагранжа-Эйлера, получаемых из вариационного принципа с такой функцией Лагранжа, инвариантна относительно преобразований вида, а также и относительно более общих преобразований

включающих замену независимой переменной. Однако конкретный вид для нового выражения для действия, как функционала новых координат, зависящих от нового времени, может претерпеть при таком изменении любые изменения.

Теорема Нётер интересуется только тем случаем, когда таких изменений не происходит.

Используя (4), получим:

Пусть преобразования такие, что

т.е. образующих однопараметрическую группу. Рассмотрим бесконечно малое преобразование, отвечающее параметру.

Собственно вариации обобщенных координат, происходящие при рассматриваемом преобразовании, - это разность значений новых координат в некоторый момент нового времени и значений старых координат в соответствующий момент старого времени, т.е.

Наряду с ними удобно ввести в рассмотрение вариации формы

зависимости координат от времени, которые отличны от нуля, даже если наше преобразование затрагивает только время, а не координаты.

Для любой функции справедливо соотношение:

Тогда между двумя введенными видами вариаций есть соотношение, которое можно получить следующим образом: вычтем из (8) уравнение (9), получим:

примем во внимание, что

тогда имеем:

Вариации без звездочек, относящиеся к одному значению аргумента, перестановочны с дифференцированием по времени

в то время, как для вариаций со звездочками это, вообще говоря, неверно.

Соответствующие два вида вариаций можно ввести и для любой динамической переменной. Например, для функции Лагранжа

где включает дифференцирование как по явно входящему времени, так и по времени, входящему неявно, через координаты и скорости.

Потребуем теперь, чтобы интеграл действия не менялся бы при нашем преобразовании, - это и есть тот исключительный случай, который требуется условием теоремы, - т.е. чтобы было

где Т" - та же область интегрирования, что и Т во втором интеграле, но выраженная через новые переменные. Тогда подставив (11) в (13), получим

Выражаем в (15) через (11) и учитывая соотношение, переходя к интегрированию по t вместо t" , получим:


Учитывая, что

Получим: (15)

Найдем дифференциал

Подставив (17) в (16), получим:

Под знаком первой суммы стоит уравнение Лагранжа, т.е.

В этом параграфе вариационный подход к задаче механики и, в частности, полученная в § 4 общая формула для вариации функционала будут использованы для того, чтобы установить связь между законами сохранения, которые были получены в предыдущих главах, и общими свойствами пространства и времени, которые находят свое выражение в инвариантности законов механики относительно преобразований систем отсчета. Установление этой связи позволит понять внутреннюю природу законов сохранения и причины, по которым эти законы существуют. Такое понимание особенно важно, ибо оно иногда позволяет предвидеть первые интегралы и тем самым облегчить исследование уравнений, описывающих движение.

Приступая к подготовке материала, который требуется для того, чтобы сформулировать теорему Эммы Нётер, устанавливающую эту связь, рассмотрим какое-либо однопараметрическое семейство преобразований системы отсчета, т. е. координат и времени:

где индекс приписан «новым» координатам и «новому» времени, а - некоторый параметр. Предположим, что преобразование (66) удовлетворяет двум следующим условиям:

1° Это преобразование тождественно при , т. е.

2° Для этого преобразования существует обратное:

Теперь мы можем сформулировать теорему Эммы Нётер. Теорема Нётер. Пусть задана система движущихся в потенциальном поле материальных точек, имеющая лагранжиан , и пусть существует однопараметрическое семейство преобразований (66), удовлетворяющее условиям 1° и 2°. Пусть, далее, лагранжиан L инвариантен по отношению к таким преобразованиям, т. е. «новый» лагранжиан (вычисленный по формуле ) не зависит от и как функция имеет совершенно такой же вид, как и «старый» лагранжиан L как функция . Тогда существует функция , которая не изменяется во время движения этой системы, т. е. является первым интегралом движения. Эта функция имеет вид

где H - гамильтониан рассматриваемой системы.

Доказательство. Рассмотрим два расширенных координатных пространства; одно из них соответствует «старым», а другое «новым» координатам и времени, получепным в результате преобразования (66). В первом из этих пространств (в пространстве q, t) выберем две произвольные точки и проведем между этими точками какую-либо кривую . Тогда однопараметрическое семейство преобразований (66) порождает во втором расширенном координатном пространстве , однопараметрическое семейство кривых (рис. VII.5). Оно получается, если из равенств (66)

исключить .

В силу первого условия, т. е. в силу формул (67), параметру соответствует исходная кривая, т. е. при

Началу и концу кривой , т. е. точкам из пространства , соответствуют в пространстве кривые, заданные параметрически (параметр ) формулами

Эти формулы получаются из формул (70), если вместо t подставить соответственно.

Примем в качестве кривой отрезок от до прямого пути системы с лагранжианом L. Рассмотрим действие по Гамильтону на этом пути:

Заменив в интеграле (72) переменную t на , получим (см. стр. 281)

где функция строится по формуле (64). С учетом новых обозначений (см. условие ):

В силу условий теоремы Э. Нётер не зависит от и как функция своих аргументов совпадает с L:

Таким образом, если выполнены условия теоремы Нётер, то интеграл (72) можно записать следующим образом:

Рассмотрим теперь интеграл (74) как функционал, заданный на однопараметрическом семействе кривых . В равенстве (74) левая часть не зависит от а. Это очевидно, так как при замене переменной интегрирования значение определенного интеграла не меняется. Поэтому в рассматриваемом случае интеграл (74) имеет одно и то же значение на всех кривых из семейства и, следовательно, при всех

Интеграл (74) имеет вид действия по Гамильтону, заданного на однопараметрическом семействе кривых, и поэтому можно воспользоваться общей формулой (60) для вариации действия . В силу (60) имеем

(75)

Равенство (75) верно при любом , но мы воспользуемся им лишь при . В силу условия 1° при равенства (66) превращаются в тождества, т. е. зависит от точно так же, как зависит от t. Но - прямой путь и на нем

Следовательно, при обращаются в нуль и все выражения, стоящие в скобках под знаком интеграла в формулах (75).

Напомним, что сначала надо подставить пределы , а затем выполнить операции , т. е. дифференцирования по параметру. Но при

и в соответствии с формулами преобразования (66)

Учитывая при подстановке пределов эти равенства и тот факт, что , после сокращения на независимое приращение из равенства (76) получаем

где верхний индекс указывает, берется ли соответствующая функция при или

Вспомним, что прямой путь и точки и на нем были выбраны произвольно. Отсюда следует, что функция (69) вообще не меняется вдоль кривой , т. е. на любом прямом пути.

Теорема Эммы Нётер доказана.

Покажем теперь, как, используя только теорему Нётер, можно получить все законы сохранения (первые интегралы), которые были установлены выше из иных соображений.

Закон сохранения механической энергии для консервативной системы. Рассмотрим консервативную (или обобщенно консервативную) систему. В качестве семейства преобразований (66) возьмем «сдвиг по времени»:

Непосредственно видно, что преобразование (78) удовлетворяет условиям 1° и 2°. Лагранжиан (так же как и гамильтониан) консервативной системы не зависит явно от времени, а , т. е. функция в данном случае равна единице. Поэтому преобразование (66) заведомо не меняет вид лагранжиана , разумеется, гамильтониана) и из теоремы Нётер следует, что консервативная система должна иметь первый интеграл вида (69). Но в данном случае все функции в силу преобразования (78) тождественно равны , т. е. не зависят от , и, следовательно, производные от них по параметру а равны нулю, а и формула (69) принимает вид

Таким образом, из теоремы Нётер следует, что при движении обобщенно консервативной системы ее обобщенная энергия H не меняется. При движении же консервативной системы и не меняется ее полная механическая энергия.

Закон сохранения импульса для циклических координат. Рассмотрим теперь систему с циклической координатой

Непосредственно видно, что это преобразование удовлетворяет условиям 1° и 2°. Лагранжиан (а значит, и гамильтониан) системы не зависит от циклических координат, и следовательно, вид этих функций не меняется при преобразовании (79). Следовательно, в силу теоремы Нётер имеет место первый интеграл вида (69). Но при преобразовании , остальные . Следовательно, в данном случае формула (69) принимает вид

Далее мы получим два закона сохранения, имеющие место при рассмотрении замкнутых систем. В связи с этим сделаем следующее общее замечание. Требование замкнутости системы означает, что все силы, действующие на материальные точки системы, зависят лишь от взаимного расположения точек и расстояний между ними. В связи с этим любые преобразования координат, сохраняющие взаимное расположение точек и расстояния между ними, не изменяют уравнения движения, т. е. не меняют вид лагранжиана.

Закон сохранения количества движения для замкнутых систем. Рассмотрим теперь замкнутую систему, движущуюся в потенциальном поле. В качестве обобщенных координат примем декартовы координаты точек и применим «сдвиг вдоль одной из осей координат», например вдоль оси :

(здесь N - число точек системы).

В связи с тем, что при сдвиге начала координат вдоль какой-либо оси расстояние между точками системы не меняется, не меняется и потенциальная энергия системы, а значит, и функция Лагранжа. Очевидно, преобразование (80) удовлетворяет условиям 1° и 2°. Таким образом, все условия, которые теорема Нётер накладывает на однопараметрическое семейство преобразований, выполнены. В силу этой теоремы имеет место первый интеграл (69). В данном случае все для координат , так же как и , равны нулю, а функции для координат таковы, что .

Поэтому в формуле (69) член, содержащий гамильтониан, обращается в нуль, а оставшаяся в правой части сумма равна

но и поэтому первый интеграл (69) имеет вид

(81)

Равенство (81) есть не что иное, как закон сохранения количества движения в проекции на ось .

Совершенно аналогично, используя преобразования типа (80) для сдвига не вдоль оси x, а вдоль осей у и z, устанавливаем сохранение проекций количества движения на оси у и z соответственно. Таким образом, закон сохранения количества движения при движении замкнутой системы в потенциальном поле полностью доказан.

Закон сохранения кинетического момента для замкнутой системы. Вновь рассмотрим замкнутую систему, движущуюся в потенциальном поле, которое получается в результате взаимодействия точек системы. Как и ранее, в качестве обобщенных координат примем декартовы координаты точек и рассмотрим преобразование поворота системы координат вокруг, например, оси z:

Непосредственно видно, что преобразование (82) удовлетворяет условию 1°, т. е. при превращается в тождественное преобразование. Легко проверить, что оно удовлетворяет и условию 2°, т. е. что система уравнений (82) разрешима относительно «старых» координат, ибо определитель этой системы равен . При повороте системы координат взаимное расположение и расстояние между точками системы не меняются, и следовательно, не меняется потенциальное поле, а значит, не меняется и L. Таким образом, в силу теоремы Нётер и в этом случае имеет место первый интеграл (69). В случае преобразования (82) для координат всех точек системы имеет место соотношение

Аналогично для всех координат

С другой стороны, и поэтому в данном случае

т. е. проекция кинетического момента на ось z сохраняется.

Совершенно аналогично, рассматривая поворот системы координат вокруг осей x и y, устанавливаем сохранение во время движения проекций кинетического момента на оси x и у соответственно, т. е. полностью доказываем закон сохранения кинетического момента для замкнутой системы, движущейся в потенциальном поле.

Таким образом, для случая движения в потенциальных полях мы получили из теоремы Нётер все законы сохранения, которые были рассмотрены выше. Теорема Нётер вскрыла природу их возникновения, связанную с инвариантностью уравнений движения при различных преобразованиях координат и времени. Закон сохранения энергии является следствием инвариантности уравнений консервативной системы при сдвиге вдоль оси времени, закон сохранения количества движения - результат инвариантности уравнений замкнутой системы по отношению к сдвигам вдоль осей координат, а закон сохранения кинетического момента - результат инвариантности уравнений замкнутой системы по отношению к поворотам вокруг осей координат.

Теорема Нётер может быть использована и в тех частных случаях, когда удается найти иные преобразования, сохраняющие лагранжиан.

Амалия (Эмми) Нётер, королева без короны

По мнению наиболее выдающихся из числа ныне здравствующих математиков, Эмми Нётер была величайшим творческим математическим гением, явившимся миру с тех пор, как для женщин открылось высшее образование.

Альберт Эйнштейн


Эйнштейн был прав, и Эмми Нётер (1882–1935) , с которой ему так и не довелось вместе поработать в Институте перспективных исследований в Принстоне (хотя она этого заслуживала как никто), была удивительным математиком - возможно, величайшей женщиной-математиком всех времен. И Эйнштейн не единственный придерживался такой точки зрения: Норберт Винер поместил Нётер в один ряд с лауреатом двух нобелевских премий Марией Кюри, которая тоже была превосходным математиком.

Также Эмми Нётер стала объектом ряда дурных шуток - вспомним хотя бы бессмертную фразу невоздержанного на язык Эдмунда Ландау: «Я могу поверить в ее математический гений, но не могу поклясться, что это женщина». Эмми в самом деле отличалась мужеподобной внешностью, а кроме этого, совершенно не задумывалась о том, как она выглядит, особенно во время занятий или научных дебатов.

По воспоминаниям очевидцев, она забывала уложить волосы, почистить платье, тщательно пережевывать пищу и отличалась многими другими чертами, которые делали ее не слишком женственной в глазах благопристойных соотечественников-немцев. Также Эмми страдала сильной близорукостью, из-за чего носила некрасивые очки с толстыми стеклами и была похожа на сову. Сюда же следует добавить и привычку носить (из соображений удобства) мужскую шляпу и набитый бумагами кожаный чемодан, как у страхового агента. Сам Герман Вейль, ученик Эмми и почитатель ее математического таланта, достаточно взвешенно выразил общее мнение о наставнице словами: «Грации не стояли у ее колыбели».

Портрет Эмми Нётер в юности.


Превращение в прекрасного лебедя

Эмми Нётер родилась в обществе, где женщины, можно сказать, были скованы по рукам и ногам. В то время в Германии правил всесильный кайзер Вильгельм II, любитель торжественных приемов и церемоний. Он приезжал в город, чинно спускался с поезда, а затем местный градоначальник произносил речь. Всей грязной работой занимался Железный Канцлер Бисмарк. Он и был истинным главой государства и общества, вдохновителем его консервативной структуры, которая препятствовала обучению женщин (всеобщее образование считалось признаком ненавистного социализма). Образцом женщины была супруга кайзера, императрица Августа Виктория. Ее жизненным кредо были четыре К: кайзер, Kinder (дети), Kirche (церковь), K"uche (кухня) - дополненная версия трех К из народной трилогии «Kinder, Kirche, K"uche ». В такой среде женщинам отводилась четко выписанная роль: на социальной лестнице они находились ниже мужчин и на ступеньку выше домашних животных. Так, женщины не могли получить образование. Собственно, обучение женщин не было запрещено полностью - для родины Гёте и Бетховена это было бы слишком. Преодолев множество препятствий, женщины могли учиться, но не имели права занимать должностей. Итог был тем же самым, но игра - более тонкой. Некоторые преподаватели, демонстрируя особое идеологическое рвение, отказывались начинать занятия, если в аудитории присутствовала хотя бы одна женщина. Совершенно иначе дело обстояло, например, во Франции, где господствовали свобода и либерализм.

Эмми родилась в небольшом городе Эрлангене, в семье преподавателей, принадлежавшей к верхушке среднего класса. Эрланген занимал необычное место в истории математики - он был малой родиной создателя так называемой синтетической геометрии Христиана фон Штаудта (1798–1867) , кроме того, именно в Эрлангене юный гений Феликс Клейн (1849–1925) обнародовал свою знаменитую Эрлангенскую программу, в которой классифицировал геометрии с точки зрения теории групп.

Отец Эмми, Макс Нётер, преподавал математику в Эрлангенском университете. Его интеллект унаследовали сын Фриц, посвятивший жизнь прикладной математике, и дочь Эмми, которая напоминала гадкого утенка из сказки Андерсена - никто не мог и предположить, каких научных высот она достигнет. В детстве и юности Эмми ничем не отличалась от сверстников: ей очень нравилось танцевать, поэтому она охотно посещала все торжества. При этом девушка не проявляла особого интереса к музыке, что отличает ее от других математиков, которые часто любят музыку и даже играют на разных инструментах. Эмми исповедовала иудаизм - в то время это обстоятельство было неважным, но сказалось на ее дальнейшей судьбе. За исключением редких проблесков гениальности обучение Эмми ничем не отличалось от обучения ее сверстниц: она умела готовить и вести домашнее хозяйство, проявляла успехи в изучении французского и английского, и ей пророчили карьеру преподавателя языков. Ко всеобщему удивлению, Эмми выбрала математику.




Фасад Kollegienhaus - одного из старейших корпусов Эрлангенского университета.


Бесконечная гонка

Эмми имела все необходимое для того, чтобы посвятить себя выбранному занятию: она знала математику, семья могла выделять ей средства на жизнь (пусть и весьма скудные), а личное знакомство с коллегами отца позволяло ей рассчитывать на то, что учеба в университете не станет невыносимой. Чтобы продолжить обучение, Эмми пришлось стать слушательницей - посещать занятия в качестве полноправного студента ей запрещалось. Она успешно окончила обучение и сдала экзамен, дававший право на получение докторской степени. В качестве темы диссертации Эмми выбрала алгебраические инварианты тернарных квадратичных форм. Преподавателем этой дисциплины был Пауль Гордан (1837–1912) , которого современники называли королем теории инвариантов; он был давним другом отца Нётер и сторонником конструктивной математики. В поисках алгебраических инвариантов Гордан превращался в настоящего бульдога: он вцеплялся в инвариант и не разжимал челюстей до тех пор, пока не выделял его среди хитросплетения расчетов, порой казавшихся бесконечными. Объяснить, что такое алгебраический инвариант и форма, не слишком сложно, но эти понятия не представляют интереса для современной алгебры, поэтому не будем останавливаться на них подробнее.

В докторской диссертации под названием «Об определении формальных систем тернарных биквадратичных форм» приведен 331 инвариант тернарных биквадратичных форм, найденный Эмми. Работа принесла ей степень доктора и дала возможность вдоволь попрактиковаться в математической гимнастике. Этот тяжкий труд сама Эмми позднее в порыве самокритики назвала чепухой. Она стала второй женщиной - доктором наук в Германии после Софьи Ковалевской.

Эмми получила должность преподавателя в Эрлангене, где проработала восемь долгих лет, не получая никакого жалования. Порой ей выпадала честь замещать собственного отца - его здоровье к тому времени ослабело. Пауль Гордан вышел в отставку, и его сменил Эрнст Фишер, который придерживался более современных взглядов и прекрасно ладил с Эмми. Именно Фишер познакомил ее с трудами Гильберта.

К счастью, проницательность Нётер, ее ум и знания заметили два светила Гёттингенского университета, «самого математического университета мира». Этими светилами были Феликс Клейн и Давид Гильберт (1862–1943) . Шел 1915 год, Первая мировая война была в самом разгаре. И Клейн, и Гильберт отличались крайним либерализмом в вопросах обучения женщин (и их участия в исследовательской работе) и были специалистами высочайшего уровня. Они убедили Эмми покинуть Эрланген и переехать к ним в Гёттинген для совместной работы. В то время гремели революционные физические идеи Альберта Эйнштейна, а Эмми была экспертом по алгебраическим и прочим инвариантам, составлявшим крайне полезный математический аппарат теории Эйнштейна (к разговору об инвариантах мы вернемся чуть позже).

Все это было бы смешно, если бы не было так грустно - даже поддержка таких авторитетов не помогла Эмми преодолеть сопротивление ученого совета Гёттингенского университета, от членов которого можно было услышать заявления в духе: «Что скажут наши героические солдаты, когда вернутся на родину, и в аудиториях им придется сидеть перед женщиной, которая будет обращаться к ним с кафедры?». Гильберт, присутствовавший при подобном разговоре, возмущенно возразил: «Не понимаю, как пол кандидата мешает избрать ее приват-доцентом. Ведь здесь университет, а не мужская баня!»

Но Эмми так и не была избрана приват-доцентом. Ученый совет объявил ей настоящую войну. Конфликт вскоре прекратился, была провозглашена Веймарская республика, и положение женщин улучшилось: они получили право голосовать, Эмми смогла занять должность профессора (но без жалования), однако лишь в 1922 году, приложив огромные усилия, она наконец начала получать деньги за свой труд. Эмми раздражало, что ее работа на посту редактора журнала «Анналы математики», отнимавшая немало времени, не была оценена по достоинству.

В 1918 году была опубликована сенсационная теорема Нётер. Многие называли ее именно так, хотя Эмми доказала немало и других теорем, в том числе очень важных. Нётер заслужила бы бессмертие, даже если бы умерла на следующий день после публикации теоремы в 1918 году, хотя на самом деле она нашла доказательство тремя годами ранее. Эта теорема не относится к абстрактной алгебре и находится на стыке между физикой и математикой, точнее говоря, принадлежит к механике. К сожалению, чтобы объяснить ее понятным для читателя языком, пусть даже в упрощенном виде, мы не сможем обойтись без высшей математики и физики.

Если говорить просто, без символов и уравнений, то теорема Нётер в наиболее общей формулировке гласит: «Если физическая система обладает непрерывной симметрией, то в ней найдутся соответствующие величины, которые сохраняют свои значения с течением времени».

Понятие непрерывной симметрии в высшей физике объясняется с помощью групп Ли. Не будем углубляться в детали и скажем, что в физике под симметрией понимается любое изменение физической системы, относительно которого физические величины в системе инвариантны. Это изменение посредством математически непрерывного преобразования должно затрагивать координаты системы, а рассматриваемая величина до и после преобразования должна оставаться неизменной.

Откуда же взялся термин «симметрия»? Он принадлежит к чисто физическому языку и применяется потому, что по смыслу схож с термином «симметрия» в математике. Представьте себе повороты пространства, образующие группу симметрии. Если мы применим один из таких поворотов к системе координат, то получим другую систему координат. Изменение координат будет описываться непрерывными уравнениями. Согласно теореме Нётер, если система инвариантна относительно подобной непрерывной симметрии (в данном случае - поворота), то в ней автоматически существует закон сохранения той или иной физической величины. В нашем случае, проведя необходимые вычисления, можно убедиться, что этой величиной будет момент импульса.

Не будем останавливаться на этой теме и приведем некоторые разновидности симметрии, группы симметрии и соответствующие физические величины, которые будут сохраняться.




Эта теорема вызвала множество хвалебных отзывов, в том числе от Эйнштейна, который писал Гильберту:

«Вчера я получил очень интересную статью госпожи Нётер о построении инвариантов. На меня производит впечатление то, что такие вещи можно рассматривать со столь общей точки зрения. Старой гвардии в Гёттингене не повредило бы, если бы ее послали на обучение к госпоже Нётер. Похоже, она хорошо знает свое ремесло ».

Похвала была заслуженной: теорема Нётер сыграла нетривиальную роль в решении задач общей теории относительности. Эта теорема, по мнению многих специалистов, является фундаментальной, а некоторые даже ставят ее в один ряд с известной всем теоремой Пифагора.

Перенесемся в простой и понятный мир экспериментов, описанный Карлом Поппером (1902–1994) , и предположим, что мы создали новую теорию, описывающую некое физическое явление. По теореме Нётер, если в рамках нашей теории присутствует некая разновидность симметрии (предполагать подобное вполне разумно), то в системе будет сохраняться некоторая величина, которую можно измерить. Таким образом можно определить, верна наша теория или нет.

ТЕОРЕМА НЁТЕР

Физическая система в механике определяется с помощью достаточно сложных терминов, в том числе такого понятия, как действие, которое можно рассматривать как произведение выделенной энергии на время, затраченное на ее поглощение. Поведение физической системы на языке математики описывается ее лагранжианом L , который представляет собой функционал (функцию от функций) вида


где q - положение, q - скорость (точка вверху в нотации Ньютона обозначает производную от q ), t - время. Обратите внимание, что q - положение в системе координат общего вида, которая необязательно является декартовой.

Действие А на языке математики выражается интегралом вдоль пути, выбранного системой:

Как сказано выше, обычно выделяют внешние и внутренние симметрии. Внутренние симметрии – это геометрические и калибровочные симметрии самой материи, отражающие инвариантность (независимость) свойств элементарных частиц и их взаимодействий относительно определенных преобразований. Большинство из них ярко проявляются лишь в микромире, присутствуя на макро- и мегауровне в скрытом виде. Внешние симметрии – это симметрии пространственно-временного континуума, одинаково ярко проявляющиеся на всех уровнях организации материи.

Выделяют следующие симметрии пространства-времени :

1. Однородность пространства . Это – сдвиговая симметрия пространства. Она заключается в эквивалентности, равенстве всех точек пространства, то естьотсутствии в пространстве каких-либо выделенных точек . Параллельный перенос (сдвиг) системы как целого в пространстве не приводит к изменению ее свойств, то есть физические законы инвариантны относительно сдвигов в пространстве .

2. Изотропность пространства . Это – поворотная симметрия пространства. Она заключается в равенстве всех направлений в пространстве, то есть вотсутствии в пространстве выделенных направлений . Поворот системы как целого в пространстве не приводит к изменению ее свойств, то естьфизические законы инвариантны относительно поворотов в пространстве.

3. Однородность времени . Сдвиговая симметрия времени отражает равенство всех точек времени, то естьотсутствие выделенных точек начала отсчета времени . Перенос системы как целого во времени не приводит к изменению ее свойств, то естьфизические законы не меняются с течением времени .

Что касается изотропности времени , то вопрос о наличии этой симметрии долгое время оставался открытым и во многом остается дискуссионным до сих пор. Так, в классической механике время симметрично: идеальные механические процессы полностью обратимы, и “поворот во времени” не приводит к изменению законов механики. В ОТО, где время, наряду с пространством, рассматривается как одна из геометрических координат, также постулируется эквивалентность его прямого и обратного течения. Подавляющее большинство элементарных процессов, протекающих в результате сильного, электромагнитного и слабого взаимодействий, также симметричны по отношению к этому преобразованию (за исключением распадов K0L-мeзонов). Но в то же время, развитие термодинамики (см. тему 2.5) показало, что в макроскопических процессах, связанных с превращением энергии, происходит ее необратимое рассеивание. Таким образом, все реальные процессы, происходящие на уровнемакро- и мегаскопических материальных систем не инвариантны по отношению к направлению времени. Его изменение на противоположное привело бы к изменению законов термодинамики: необратимое рассеивание энергии сменилось бы ее самопроизвольной концентрацией. Следовательно, для этих процессов времяанизотропно , не обладает симметрией поворота.

Связь законов сохранения с симметрией (теорема Нетер)

Развитие математических методов описания симметрии, в частности аналитической механики Лагранжа и Гамильтона, показало, что как законы классической механики Ньютона, так и уравнения электродинамики Максвелла могут быть выведены математическим путем из соображений симметрии. Методы аналитической механики можно распространить и на квантовую механику, где классические теории теряют свою применимость.

Важнейший результат в этой области теоретической физики связан с именем выдающейся женщины-математика Амалии (Эмми) Нетер (1882–1935). В 1918 г. Нетер была доказана теорема, позднее названная ее именем, из которой следует, что если некоторая система инвариантна (неизменна) относительно некоторого преобразования, то для нее существует определенная сохраняющаяся величина . Иными словами, существование любой конкретной симметрии приводит к соответствующему закону сохранения .

Эта теорема справедлива для любых симметрий – в пространстве-времени, степенях свободы элементарных частиц и физических полей, – то есть она носит универсальный характер . Теорема Нетер стала важнейшим инструментом теоретической физики, утвердившим особуюмеждисциплинарную роль принципов симметрии при построении физической теории .

Непрерывные симметрии приводят к существованию законов сохранения, проявляющихся на всех уровнях организации материи. Так, согласно теореме Нетер, из однородности (сдвиговой симметрии) пространства следуетзакон сохранения импульса (количества движения), из изотропности (поворотной симметрии) пространства –закон сохранения момента импульса (момента количества движения), из однородности времени следуетзакон сохранения энергии . Из калибровочной симметрии динамики заряженных частиц в электромагнитных полях следуетзакон сохранения электрического заряда.

Что касается дискретных симметрий, то в классической механике они не приводят к каким-либо законам сохранения. Однако в квантовой механике, в которой состояние системы описывается волновой функцией, или для волновых полей (например, электромагнитного поля), где справедлив принцип суперпозиции, из существования дискретных симметрий также следуют законы сохранения некоторых специфических величин, не имеющих аналогов в классической механике. Так, зеркальная симметрия, или пространственная инверсия (Р ), приводит к закону сохранения пространственной четности; симметрия замены всех частиц на античастицы, или зарядовое сопряжение (С ) – к закону сохранения зарядовой четности и т. д.

Теорема Нетер дает наиболее простой и универсальный метод получения законов сохранения. Особенно важное значение имеет теорема Нетер в квантовой теории поля, где законы сохранения, вытекающие из существования определенной группы симметрии, являются часто основным источником информации о свойствах изучаемых объектов.